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S1 The fundamental characteristics of Laguerre-Gaussian mode

Laguerre-Gaussian (LG) modes are solutions of the paraxial wave equation. The electric field

representation of LG mode in circular-cylindrical coordinate is given by

LG`,p(r, φ, z) =

√
2p!

π(p+ |`|)!
1

ω(z)
(

√
2r

ω(z)
)|`| · L|`|p (

2r2

ω2(z)
) · exp(− r2

ω2(z)
)

·exp(i(`φ− kr2z

2(z2 + z2r )
+ (2p+ |`|+ 1)arctan(

z

zr
))),

(S1)

where ` and p are the azimuthal and radial indexes, respectively; ω(z) = ω(0)
√

1 + (z/zr)2 is the

beam waist with ω(0) being the beam waist at the pupil and zr = kω2(0)/2 being the Rayleigh

range; (2p+ |`|+ 1)arctan( z
zr

) gives the Gouy phase; L|`|p (x) is the generalized Laguerre polyno-

mial of order p and degree ` and can be described as

L|`|p (x) =

p∑
k=0

(−1)k(p+ |`|)!
k!(p− k)!(|`|+ k)!

xk. (S2)

The orthogonality between generalized Laguerre polynomial is of the form

∫ ∞
0

L|`|p1(x) · L|`|p2(x) · x|`|e−xdx =
(p1 + |`|)!

p1!
δp1,p2 , (S3)

together with the angular integral

∫ 2π

0

exp(i(`1 − `2)φ)dφ = 2πδ`1,`2 (S4)
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resulting in the orthogonality between LG modes

∫ 2π

0

∫ ∞
0

LG`1,p1(r, φ) · LG∗`2,p2(r, φ)rdrdφ = δ`1,`2δp1,p2 . (S5)

And it can be seen that azimuthal and radial indexes are independent in mode orthogonality, which

indicates that they can form two independent spatial degrees of freedom (DOFs).

S2 The theoretical model

Due to the orbital angular momentum (OAM) conservation, the phase-matching conditions, and the

energy conservation respectively, the generated twin modes have the opposite azimuthal quantum

number `, the same radial quantum number p, and the opposite frequency shifting from pump beam

f under our experimental conditions. Labelling the creation operators of LGPr
`,p,f and LGConj

−`,p,−f

modes as â†`,p,f and b̂†−`,p,−f respectively and denoting the strength of the interaction with each

pair of generated modes as the real parameter γ`,p,f , the interaction Hamiltonian of the four-wave

mixing (FWM) process can be written as

Ĥ =
∑
`,p,f

i~γ`,p,f â†`,p,f b̂
†
−`,p,−f + H.c., (S6)

in which H.c. denotes the Hermitian conjugate. Note that the Hamiltonian is under the “undepleted

pump” approximation since the intensity of the pump beam is not significantly changed by the
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mixing process. The Hamiltonian can also be written as

Ĥ =
∑
p,f

i~(γ0,p,f â
†
0,p,f b̂

†
0,p,−f + γ1,p,f â

†
1,p,f b̂

†
−1,p,−f + γ−1,p,f â

†
−1,p,f b̂

†
1,p,−f + · · · ) + H.c.

=
∑
`,f

i~(γ`,0,f â
†
`,0,f b̂

†
−`,0,−f + γ`,1,f â

†
`,1,f b̂

†
−`,1,−f + γ`,2,f â

†
`,2,f b̂

†
−`,2,−f + · · · ) + H.c.

=
∑
`,p

i~(γ`,p,f1 â
†
`,p,f1

b̂†−`,p,−f1 + γ`,p,f2 â
†
`,p,f2

b̂†−`,p,−f2 + γ`,p,f3 â
†
`,p,f3

b̂†−`,p,−f3 + · · · ) + H.c.,

(S7)

showing that the three independent DOFs are equally important in generating CV hyperentangle-

ment in our system.

Then the corresponding time-evolution operator can be expressed as

Û(t) = e−iĤt/~ = e
∑

`,p,f γ`,p,f (â
†
`,p,f b̂

†
−`,p,−f−â`,p,f b̂−`,p,−f )t. (S8)

Using the commutation relations

[â`1,p1,f1 , â
†
`2,p2,f2

] = [b̂`1,p1,f1 , b̂
†
`2,p2,f2

] = δ`1,`2δp1,p2δf1,f2 ,

[â`1,p1,f1 , â`2,p2,f2 ] = [â†`1,p1,f1 , â
†
`2,p2,f2

] = [b̂`1,p1,f1 , b̂`2,p2,f2 ] = [b̂†`1,p1,f1 , b̂
†
`2,p2,f2

]

= [â`1,p1,f1 , b̂`2,p2,f2 ] = [â†`1,p1,f1 , b̂
†
`2,p2,f2

] = [â`1,p1,f1 , b̂
†
`2,p2,f2

] = [b̂`1,p1,f1 , â
†
`2,p2,f2

] = 0

(S9)

and the Baker-Hasudoff theorem

eÂ+B̂ = eÂ · eB̂ · e
1
2
[Â,B̂], (S10)
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the time-evolution operator can be further written as

Û(t) = e
∑

`,p,f γ`,p,f (â
†
`,p,f b̂

†
−`,p,−f−â`,p,f b̂−`,p,−f )t =

∏
`,p,f

eγ`,p,f (â
†
`,p,f b̂

†
−`,p,−f−â`,p,f b̂−`,p,−f )t. (S11)

Then by applying the time-evolution operator to the vacuum state, the state of FWM output field

can be written as

|ψ〉out = Û(t)|vac〉 =
∏
`,p,f

eγ`,p,f (â
†
`,p,f b̂

†
−`,p,−f−â`,p,f b̂−`,p,−f )t|vac〉. (S12)

Supposing that the mixing interaction occurs over a timescale τ , the time-evolution operator can

be described as

Û(τ) =
∏
`,p,f

eγ`,p,f (â
†
`,p,f b̂

†
−`,p,−f−â`,p,f b̂−`,p,−f )τ =

∏
`,p,f

U`,p,f (τ), (S13)

which indicates Û(τ) can be applied to a multi-mode vacuum state. Then we set

Ŝ(r`,p,f ) ≡ Û`,p,f (τ) = er`,p,f (â
†
`,p,f b̂

†
−`,p,−f−â`,p,f b̂−`,p,−f ), (S14)

which is the so-called two-mode squeezing operator squeezing the modes â`,p,f and b̂`,p,f together;

r`,p,f = γ`,p,fτ is the squeezing parameter quantifying the degree of mixing. Then the final state of

FWM output field can be further written as

|ψ〉out =
∏
`,p,f

Ŝ(r`,p,f )|vac〉`,p,f =
∏
`,p,f

|ψ〉`,p,f , (S15)
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where Ŝ(r`,p,f ) are a series of two-mode squeezing operators corresponding to independent squeez-

ing vacuum states |ψ〉`,p,f of two modes with the opposite azimuthal quantum number, the same

radial quantum number, and the opposite frequency shifting from pump beam.

Each pair of generated modes can be described quantum mechanically by corresponding am-

plitude and phase quadratures. In our system, they can be written as

X̂Pr
`,p,f = â`,p,f + â†`,p,f , Ŷ

Pr
`,p,f = i(â†`,p,f − â`,p,f ),

X̂Conj
−`,p,−f = b̂−`,p,−f + b̂†−`,p,−f , Ŷ

Conj
−`,p,−f = i(b̂†−`,p,−f − b̂−`,p,−f ).

(S16)

Then we can construct the corresponding covariance matrix σ to characterize the quantum property

of each mode pair

σ =



〈X̂Pr
`,p,fX̂

Pr
`,p,f〉 〈X̂Pr

`,p,f Ŷ
Pr
`,p,f〉 〈X̂Pr

`,p,fX̂
Conj
−`,p,−f〉 〈X̂Pr

`,p,f Ŷ
Conj
−`,p,−f〉

〈Ŷ Pr
`,p,fX̂

Pr
`,p,f〉 〈Ŷ Pr

`,p,f Ŷ
Pr
`,p,f〉 〈Ŷ Pr

`,p,fX̂
Conj
−`,p,−f〉 〈Ŷ Pr

`,p,f Ŷ
Conj
−`,p,−f〉

〈X̂Conj
−`,p,−fX̂

Pr
`,p,f〉 〈X̂

Conj
−`,p,−f Ŷ

Pr
`,p,f〉 〈X̂

Conj
−`,p,−fX̂

Conj
−`,p,−f〉 〈X̂

Conj
−`,p,−f Ŷ

Conj
−`,p,−f〉

〈Ŷ Conj
−`,p,−fX̂

Pr
`,p,f〉 〈Ŷ

Conj
−`,p,−f Ŷ

Pr
`,p,f〉 〈Ŷ

Conj
−`,p,−fX̂

Conj
−`,p,−f〉 〈Ŷ

Conj
−`,p,−f Ŷ

Conj
−`,p,−f〉


. (S17)

According to

Ŝ†(r`,p,f ) = Ŝ−1(r`,p,f ) = Ŝ(−r`,p,f ) (S18)

and

eÂB̂e−Â =
∞∑
i=0

1

i!
[Â(i), B̂], (S19)
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the unitary transformation properties of two-mode squeezing operator can be obtained

Ŝ†(r`,p,f )X̂
Pr
`,p,f Ŝ(r`,p,f ) = X̂Pr

`,p,fcosh(r`,p,f ) + X̂Conj
−`,p,−fsinh(r`,p,f ),

Ŝ†(r`,p,f )X̂
Conj
−`,p,−f Ŝ(r`,p,f ) = X̂Conj

−`,p,−fcosh(r`,p,f ) + X̂Pr
`,p,fsinh(r`,p,f ),

Ŝ†(r`,p,f )Ŷ
Pr
`,p,f Ŝ(r`,p,f ) = Ŷ Pr

`,p,fcosh(r`,p,f ) + Ŷ Conj
−`,p,−fsinh(r`,p,f ),

Ŝ†(r`,p,f )Ŷ
Conj
−`,p,−f Ŝ(r`,p,f ) = Ŷ Conj

−`,p,−fcosh(r`,p,f ) + Ŷ Pr
`,p,fsinh(r`,p,f ).

(S20)

Then the element of covariance matrix can be calculated

〈X̂Pr
`,p,fX̂

Pr
`,p,f〉 =`,p,f〈ψ|X̂Pr

`,p,fX̂
Pr
`,p,f |ψ〉`,p,f

=〈vac|Ŝ†(r`,p,f )X̂Pr
`,p,f Ŝ(r`,p,f )Ŝ

†(r`,p,f )X̂
Pr
`,p,f Ŝ(r`,p,f )|vac〉 = 2G`,p,f − 1,

(S21)

where G`,p,f = cosh2(r`,p,f ) is the intensity gain of corresponding mode pair. Similarly all the

elements of covariance matrix can be calculated

σ =



2G`,p,f − 1 0 2
√
G`,p,f (G`,p,f − 1) 0

0 2G`,p,f − 1 0 −2
√
G`,p,f (G`,p,f − 1)

2
√
G`,p,f (G`,p,f − 1) 0 2G`,p,f − 1 0

0 −2
√
G`,p,f (G`,p,f − 1) 0 2G`,p,f − 1


.

(S22)

For the purpose of verifying continuous-variable (CV) entanglement, the positivity under par-

tial transposition (PPT) criterion66 is used. By calculating the smallest symplectic eigenvalue ν

of the partially transposed covariance matrix, we can judge whether the state is entangled. If ν is

smaller than 1, it is an entangled state; otherwise it is a separable state. In our system, ν can be
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written as

ν =min[Eigenvalue(iSMσM)]

=

√
1 + 8G`,p,f (G`,p,f − 1)− 4

√
G`,p,f (G`,p,f − 1)(2G`,p,f − 1)2,

(S23)

where

S =



0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0


, M =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1


. (S24)

It can be seen that ν is smaller than 1 when corresponding Gl,p,f is greater than 1, which indi-

cates the existence of CV entanglement. These CV entangled states in three independent DOFs

guarantee the generation of large-scale CV hyperentanglement from the FWM process.

S3 Balanced homodyne detection

Balanced homodyne detection (BHD) technique, in which the whole optical field is projected onto

a specific mode according to the tailored local oscillator (LO), is widely used in CV system for its

high detection efficiency. For BHD, only the signal field with the same frequency as the one of the

LO can be extracted. Therefore, in the following calculation, we assume that the signal field and

the LO have the same frequency. Regarding LG modes, the BHD scheme is illustrated in Fig. S1.

Note that the 50:50 beam splitter (BS) will transform LG`,p,f mode to LG−`,p,f mode when it is get

reflected. A LO âLG`1,p1,f (r, φ) and a signal field b̂LG`2,p2,f (r, φ) are incident into the two ports
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Fig S1 Schematic of balanced homodyne detection. A local oscillator and a signal field are incident into the two ports
of a 50:50 beam splitter, then the fields of two output ports are measured by two detectors whose photocurrents are
subtracted by a subtractor.

of a BS respectively, then the fields of two output ports can be written as

ĉ =
1√
2

[âLG−`1,p1,f (r, φ) · eiθ + b̂LG`2,p2,f (r, φ)],

d̂ =
1√
2

[âLG`1,p1,f (r, φ) · eiθ − b̂LG−`2,p2,f (r, φ)],

(S25)

where θ is the relative phase difference between LO and signal field. Then the fields ĉ and d̂ are

detected, after which the two detected photocurrents are subtracted by a subtractor. The difference

photocurrent can be expressed as

I− =

∫ 2π

0

∫ ∞
0

(d̂†d̂− ĉ†ĉ)rdrdφ

∝
∫ ∞
0

(

√
2r

ω
)|`1|(

√
2r

ω
)|`2| · L|`1|p1

(
2r2

ω2
) · L|`2|p2

(
2r2

ω2
) · exp(−2r2

ω2
)rdr

·
∫ 2π

0

1

2
[â†b̂e−i(`1+`2)φe−iθ + b̂†âei(`1+`2)φeiθ + â†b̂ei(`1+`2)φe−iθ + b̂†âe−i(`1+`2)φeiθ]dφ.

(S26)
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We express â and b̂ as

â ≈ |α|+ δâ

b̂ ≈ |β|+ δb̂

(S27)

and neglect terms without |α| because the coherence amplitude of the LO is much larger than that

of the signal field (|α| � |β|). Then the difference photocurrent can be approximated as

I− ∝
∫ ∞
0

(

√
2r

ω
)|`1|(

√
2r

ω
)|`2| · L|`1|p1

(
2r2

ω2
) · L|`2|p2

(
2r2

ω2
) · exp(−2r2

ω2
)rdr ·

∫ 2π

0

|α|cos[(`1 + `2)φ]δXθ
b dφ

∝ |α|δXθ
b δl1,−l2δp1,p2

,

(S28)

where δXθ
b = δbe−iθ + δb̂†eiθ is the amplitude quadrature of the signal field. It can be seen that the

difference photocurrent is proportional to the quantum fluctuation of a specific LG mode which

has the opposite azimuthal index and the same radial index as the LO.

S4 Measurement of covariance matrix

In our experiment, the probe and conjugate beam are detected by two sets of BHD respectively.

Then the normalized diagonal terms of covariance matrix can be obtained by

〈X̂Pr
`,p,fX̂

Pr
`,p,f〉 =

∆2(LPr
−`,p,fX̂

Pr
`,p,f )

∆2(LPr
−`,p,fX̂vac)

, 〈Ŷ Pr
`,p,f Ŷ

Pr
`,p,f〉 =

∆2(LPr
−`,p,f Ŷ

Pr
`,p,f )

∆2(LPr
−`,p,f Ŷvac)

〈X̂Conj
−`,p,−fX̂

Conj
−`,p,−f〉 =

∆2(LConj
`,p,−fX̂

Conj
−`,p,−f )

∆2(LConj
`,p,−fX̂vac)

, 〈Ŷ Conj
−`,p,−f Ŷ

Conj
−`,p,−f〉 =

∆2(LConj
`,p,−f Ŷ

Conj
−`,p,−f )

∆2(LConj
`,p,−f Ŷvac)

,

(S29)
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where X̂Pr
`,p,f (X̂Conj

−`,p,−f ), Ŷ Pr
`,p,f (Ŷ Conj

−`,p,−f ) are the amplitude quadrature and phase quadrature of

probe (conjugate) beam, respectively, LPr
−`,p,f (LConj

`,p,−f ) is the optical power of LO, ∆2(LPr
−`,p,fX̂

Pr
`,p,f )

(∆2(LConj
`,p,−fX̂

Conj
−`,p,−f )) is the noise power of photocurrent when the signal field is fed into the

detectors, and ∆2(LPr
−`,p,fX̂vac) (∆2(LConj

`,p,−f Ŷvac)) is the noise power of photocurrent when the

signal field is blocked. By combining the photocurrents of two BHDs via a adder (subtractor),

we can measure the noise power of the sum (difference) of the two photocurrents, and the mini-

mum of the measurement result is equal to ∆2(LPr
−`,p,f Ŷ

Pr
`,p,f +LConj

`,p,−f Ŷ
Conj
−`,p,−f ) (∆2(LPr

−`,p,fX̂
Pr
`,p,f −

LConj
`,p,−fX̂

Conj
−`,p,−f )). Then we can obtain

〈X̂Pr
`,p,fX̂

Conj
−`,p,−f〉 =

∆2(LPr
−`,p,fX̂

Pr
`,p,f ) + ∆2(LConj

`,p,−fX̂
Conj
−`,p,−f )−∆2(LPr

−`,p,fX̂
Pr
`,p,f − L

Conj
`,p,−fX̂

Conj
−`,p,−f )

2
√

∆2(LPr
−`,p,fX̂vac)

√
∆2(LConj

`,p,−fX̂vac)

(S30)

In a similar way, all the normalized off-diagonal terms of the covariance matrix can be obtained.

Then we can fully construct the covariance matrix for characterizing the CV hyperentanglement.

S5 Frequency bandwidth for maintaining entanglement

The frequencies of generated probe and conjugate beams from our system are tunable. In our

experiment, the frequency of seeded probe beam is redshifted from the pump beam frequency

through an acousto-optic modulator (AOM). By changing the input radio-frequency signal of the

AOM, we can set the frequency shifting f of the probe beam. In this way, probe (conjugate)

beam with a frequency of ωPump − f (ωPump + f ) is generated from the FWM process, where

ωPump = 377.1102 THz is the frequency of pump beam. Such probe and conjugate beams are

used for LOs of the two BHDs to extract corresponding frequency mode from the unseeded FWM

process. Then we do a series of entanglement measurements between LGPr
3,2,f and LGConj

−3,2,−f modes
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Fig S2 The smallest symplectic eigenvalue ν for LGPr
3,2,f and LGConj

−3,2,−f modes as a function of f . The error bars are
obtained from the standard deviations of multiple repeated measurements.

with varying f . The smallest symplectic eigenvalue ν as a function of f is shown in Fig. S2. As can

be seen, for f in a range of about 55 MHz, ν is always smaller than one, indicating the existence

of CV entanglement. Therefore, for maintaining entanglement, the frequency bandwidth of our

system for the case of ` = 3 and p = 2 is about 55 MHz. The frequency bandwidth for arbitrary

LG modes can be measured in a similar way. They are all at the level of tens of MHz.

S6 Independent addressability of entangled frequency modes

The detailed experimental setup confirming that the generated frequency modes will not mix and

can be independently addressed is shown in Fig. S3, where two seeded and an unseeded FWM

processes happen in the same 85Rb vapor cell. The frequency-multiplexed CV entanglement is

generated from the unseeded FWM process (inside the dashed frame), while the two seeded FWM

processes are used for generating respective LOs of the two BHDs. A cavity stabilized Ti:sapphire

laser produces a beam whose frequency is around 377.1102 THz (ωPump). The beam is divided into

three, one of which is further split, serving as respective pump beams of the three FWM processes.
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Fig S3 Experimental setup for independently addressing different frequency modes.

The other two beams are redshifted by f1 and f2, respectively, through two AOMs, serving as

respective seeding probe beams of the two seeded FWM processes. Due to the energy conservation,

bright beams with frequency sideband modes ωPump ± f1 and ωPump ± f2 are generated from the

two seeded FWM processes, respectively. In order to measure the covariance matrix elements,

two BHDs are employed. One for detecting probe beam and the other one for detecting conjugate

beam. The generated fields from the unseeded FWM process will be projected onto the same

frequency mode with the LOs, which ensures the perfect extraction of the desired frequency mode

in the BHD. We choose two bright beams generated from the seeded FWM processes, ωPump + f1

and ωPump−f2, as the respective LOs of the two BHDs. In this way, the probe (conjugate) field will

be projected onto ωPump − f2 (ωPump + f1) mode. The photocurrents from the two BHDs together

with their subtraction and addition are recorded by the spectrum analyzers (SAs). Then we can

obtain the variances of amplitude quadrature X̂Pr
f2

(X̂Conj
−f1 ) and phase quadrature Ŷ Pr

f2
(Ŷ Conj
−f1 ) of the

probe (conjugate) beam and the covariance of two-beam quadratures.

As mentioned above, in the BHDs, the probe field will be projected onto ωPump − f2 mode,
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Fig S4 Experimentally measured covariance matrices between frequency modes (a) ωPump-3.04 GHz and
ωPump+3.04 GHz, (b) ωPump-3.045 GHz and ωPump+3.04 GHz, (c) ωPump-3.05 GHz and ωPump+3.04 GHz, (d)
ωPump-3.04 GHz and ωPump+3.045 GHz, (e) ωPump-3.045 GHz and ωPump+3.045 GHz, (f) ωPump-3.05 GHz and
ωPump+3.045 GHz, (g) ωPump-3.04 GHz and ωPump+3.05 GHz, (h) ωPump-3.045 GHz and ωPump+3.05 GHz, (i)
ωPump-3.05 GHz and ωPump+3.05 GHz. (j) The corresponding smallest symplectic eigenvalues of partially trans-
posed covariance matrices between different frequency modes.

while the conjugate field will be projected onto ωPump + f1 mode. We perform measurements

of the covariance matrix between frequency modes ωPump − f2 and ωPump + f1 by changing the

amounts of frequency shift f1 and f2 with f1, f1 ∈ {3.04 GHz, 3.045 GHz, 3.05 GHz}. The nine

experimentally measured covariance matrices are shown in Figs. S4(a)-S4(i). As can be seen from

Figs. S4(a), S4(e), and S4(i), for the three frequency sidebands satisfying energy conservation

(f1 = f2), the correlations of X̂Pr
f2

,X̂Conj
−f1 and anticorrelations of Ŷ Pr

f2
,Ŷ Conj
−f1 are apparent in the off-

diagonal elements of the covariance matrices. The corresponding smallest symplectic eigenvalues

of partially transposed covariance matrices are smaller than one, as shown in Fig. S4(j), which

verifies the CV entanglement between two correlated frequency modes. In contrast, as shown

in Figs. S4(b), S4(c), S4(d), S4(f), S4(g), and S4(h), for frequency modes that do not satisfy

energy conservation (f1 6= f2), all the off-diagonal elements of covariance matrices are around

zero, showing no correlations between the frequency modes. Accordingly, the smallest symplectic
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Fig S5 (From left to right) Intensity gain, interference visibility of the BHD for detecting the probe beam, and
interference visibility of the BHD for detecting the conjugate beam as a function of the two quantum numbers ` and p
at different frequency in the case of (a) f = 3.04 GHz, (b) f = 3.045 GHz, and (c) f = 3.05 GHz, respectively.

eigenvalues of partially transposed covariance matrices are all above one, certifying the separability

between uncorrelated frequency modes. Our results clearly show that the frequency sidebands

spaced by 5 MHz are independently generated from the FWM process and can be independently

addressed by BHD. Therefore, frequency can be characterized as a potential multiplexing resource

in our system.

S7 The intensity gain of the FWM process and the interference visibility of BHD

For the purpose of testing the intensity gain of the FWM, we switch the unseeded FWM process

to the seeded process by seeding a bright probe beam of LG`,p,f . In this way, the intensity gains
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varying with `, p, and f are shown in each subfigure of Fig. S5 (left). It can be seen that the

higher the LG mode order is, the smaller the intensity gain will be, which is in consequence of the

beam size increase of higher-order LG modes. Such increment in beam size results in the reduced

overlap with the pump beam and thus weaker nonlinear interaction strength. By making the two

FWM interactions identical, we can record the interference visibilities between the corresponding

LO and probe (conjugate) fields, which is illustrated in the middle (right) of each subfigure of

Fig. S5. These visibilities are within the range of 0.90 and 0.98 and decrease slightly with the

increasing of the mode order, indicating the BHD extraction efficiency for different LG modes.

S8 Theoretical prediction for the experimental results

To estimate the possible number of entangled spatial modes, we refer to the Schmidt number67

which is roughly the number of pairs of optical modes coupled in the gain region.68 For our system,

in the ideal case (without any losses and noises introduced) the generated twin modes are entangled

as long as the corresponding gain is greater than one (Eq. S23). Therefore, the possible number

of pairs of entangled spatial modes is equal to the number of pairs of optical modes coupled in the

gain region, i.e., the Schmidt number.

The Schmidt decomposition of the two-photon field is equivalent to a coherent mode decom-

position of the coherence function of the reduced one-photon field. The reduced one-photon field

is an incoherent mixture of all of the Schmidt modes. The Schmidt number can thus be estimated

according to the one-photon coherence of the FWM emission. In our system, the Schmidt number

K can be calculated by

K = (
wp
wcoh

)2, (S31)
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which counts the number of independent coherent regions in the source,68,69 where wp is the pump

beam waist, wcoh is the transverse coherence width, i.e. the waist of a beam such that the Rayleigh

range is equal to the length of the gain medium, which can be calculated from wcoh =
√
Lλ/nπ.

In our experiment, the waist of pump beam wp is about 950 µm, the cell length L is 12 mm, the

wavelength λ is 795 nm, and the refractive index n is 1. Therefore, we get K ≈ 297. In other

words, there are about 297 Schmidt modes available in our system in the ideal case.

However, the number of experimentally accessible entangled mode pairs is lower than the the-

oretically predicted Schmidt number. This is due to the fact that CV entanglement is very sensitive

to losses and noises, and the degree of CV entanglement is affected by the imperfections of the

experiment.5 Various imperfections, such as atomic absorption, propagation losses, imperfect ho-

modyne visibilities, non-unity quantum efficiency of photodiode, and scattered pump light, are

unavoidable in our experiment, which introduce excess noise and deteriorate the entanglement.

Meanwhile, higher-order spatial modes have less overlap with the pump beam, resulting in smaller

gain and thus smaller degree of CV entanglement. In our experiment, the entanglement between

high-order LG modes disappears due to the excess noise and too small gain. To better predict the

experimental results considering the experimental imperfections, we use a theoretical model for

gain, loss, and noise in the measurement of CV hyperentanglement.

The optical losses caused by atomic absorption, light propagation, and photodiode can be mod-

eled by optical beam splitters (BS1 and BS2), which combine signal field with extra vacuum field

(âv for probe and b̂v for conjugate), placed in the beam paths as shown in Fig. S6. The transmit-

tance of probe (conjugate) field is ηa = ηa1ηa2ηa3 (ηb = ηb1ηb2ηb3), where ηa1 = 0.88 (ηb1 = 0.95)

is the transmittance for probe (conjugate) beam in atomic vapor cell, ηa2 = 0.95 (ηb2 = 0.94) is

the transmission efficiency of probe (conjugate) beam during propagation, ηa3 = 0.85 (ηb3 = 0.85)
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Fig S6 The theoretical model for gain, loss, and noise in the measurement of CV hyperentanglement.

is the quantum efficiency of photodiode (Hamamatsu S5972). Meanwhile, imperfect homodyne

visibilities will lead to increased losses and then uncorrelated noise, which will deteriorate the

entanglement. For our multi-spatial-mode system, imperfect homodyne visibilities can couple in

uncorrelated amplified modes, and hence can cause larger degradation of the measured squeezing

than the single-mode system where homodyne mismatch introduces only the vacuum noise. We

model the effect of imperfect visibilities of balanced homodyne detections (BHDs) with optical

beam splitters (BS3 and BS4) whose transmittances are V 2
a and V 2

b for probe and conjugate beams,

where Va and Vb are the visibilities of the BHDs for detecting the probe and conjugate beams re-

spectively. To account for the coupling of uncorrelated amplified modes due to the mode mismatch

of our BHDs, we couple in uncorrelated thermal fields (âtherm for probe and b̂therm for conjugate),

which have noise power equal to those of the signal fields, through the second ports of beam split-

ters BS3 and BS4. In addition, the scattered pump light will be detected by the photodiode and

thus introduce excess noise to this system.

The input-output relations of our system with considering atomic absorption, propagation

losses, imperfect homodyne visibilities, and non-unity quantum efficiency of photodiode can be
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written as

â = Va
√
ηaGâ0 + Va

√
ηa(G− 1)b̂†0 +

√
ηa(1− V 2

a )âtherm +
√

1− ηaâv,

b̂ = Vb
√
ηbGb̂0 + Vb

√
ηb(G− 1)â†0 +

√
ηb(1− V 2

b )b̂therm +
√

1− ηbb̂v,
(S32)

where G is the intensity gain of the unseeded FWM process, â (b̂) is the detected probe (conjugate)

field, as shown in Fig. S6. The quantum properties of generated probe and conjugate fields can be

described by corresponding amplitude and phase quadratures. In our system, they can be written

as

X̂a = â+ â†, Ŷa = i(â† − â), X̂b = b̂+ b̂†, Ŷb = i(b̂† − b̂). (S33)

Then the variances and covariances of the probe (â) and conjugate (b̂) fields can be calculated as

∆2(X̂a) = ∆2(Ŷa) = 2ηa(G− 1) + 1,

∆2(X̂b) = ∆2(Ŷb) = 2ηb(G− 1) + 1,

Cov(X̂a, X̂b) = 2VaVb
√
ηaηbG(G− 1),

Cov(Ŷa, Ŷb) = −2VaVb
√
ηaηbG(G− 1),

Cov(X̂a, Ŷa) = Cov(X̂a, Ŷb) = Cov(X̂b, Ŷb) = Cov(X̂b, Ŷa) = 0.

(S34)

In the practical measurements of covariance matrix, the detected matrix elements are obtained by

the variances of photocurrents from BHDs with considering the detected signal field and scattered
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pump light

〈X̂aX̂a〉 =
∆2(LaX̂a + Pc1X̂c1 + Pc2X̂c2)

∆2(LaX̂vac + Pc2X̂c2)
=

L2
a

L2
a + P 2

c2

(2ηa(G− 1) + 1) +
P 2
c1 + P 2

c2

L2
a + P 2

c2

,

〈X̂aX̂b〉 =
∆2(LaX̂a + Pc1X̂c1 + Pc2X̂c2) + ∆2(LbX̂b + Pc3X̂c3 + Pc4X̂c4)

2

√
∆2(LaX̂vac + Pc2X̂c2)

√
∆2(LbX̂vac + Pc4X̂c4)

−∆2((LaX̂a + Pc1X̂c1 + Pc2X̂c2)− (LbX̂b + Pc2X̂c2 + Pc4X̂c4))

2

√
∆2(LaX̂vac + Pc2X̂c2)

√
∆2(LbX̂vac + Pc4X̂c4)

=
2VaVb

√
ηaηbG(G− 1)√

1 + (Pc2/La)2
√

1 + (Pc4/Lb)2
,

(S35)

where La and Lb are the optical powers of LOs for detecting the probe and conjugate fields which

are equal to GI0 and (G − 1)I0, respectively, because the LOs are generated by a similar FWM

process with the aforementioned unseeded FWM process, and I0 is the optical power of the seeding

probe beam. Pc1 (Pc3) and Pc2 (Pc4), whose values are estimated to about 0.12I0, are the optical

power of scattered pump light, incident on the probe (conjugate) homodyne detector, of the seeded

and unseeded FWM, and X̂c1 (X̂c3) and X̂c2 (X̂c4) are the corresponding quadratures of scattered

pump light detected by the photodiode which are assumed to have the noise level of vacuum state.

Similarly, all the covariance matrix elements are obtained

〈X̂aX̂a〉 = 〈ŶaŶa〉 =
G2

G2 + 0.122
(2ηa(G− 1) + 1) +

2× 0.122

G2 + 0.122
,

〈X̂bX̂b〉 = 〈ŶbŶb〉 =
(G− 1)2

(G− 1)2 + 0.122
(2ηa(G− 1) + 1) +

2× 0.122

(G− 1)2 + 0.122
,

〈X̂aX̂b〉 = 〈X̂bX̂a〉 =
2VaVb

√
ηaηbG(G− 1)√

1 + (0.12/G)2
√

1 + (0.12/(G− 1))2
,

〈ŶaŶb〉 = 〈ŶbŶa〉 =−
2VaVb

√
ηaηbG(G− 1)√

1 + (0.12/G)2
√

1 + (0.12/(G− 1))2
,

〈X̂aŶa〉 = 〈X̂aŶb〉 =〈ŶaX̂a〉 = 〈ŶaX̂b〉 = 〈X̂bŶa〉 = 〈X̂bŶb〉 = 〈ŶbX̂a〉 = 〈ŶbX̂b〉 = 0.

(S36)
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Fig S7 (a) Experimentally measured and (b) theoretically predicted smallest symplectic eigenvalue ν of the partially
transposed covariance matrix. In each subfigure, the charts from left to right denote different frequency modes as
indicated by the bottom. The error bars are obtained from the standard deviations of multiple repeated measurements.

Then we can construct the covariance matrix

σ1 =



〈X̂aX̂a〉 〈X̂aŶa〉 〈X̂aX̂b〉 〈X̂aŶb〉

〈ŶaX̂a〉 〈ŶaŶa〉 〈ŶaX̂b〉 〈ŶaŶb〉

〈X̂bX̂a〉 〈X̂bŶa〉 〈X̂bX̂b〉 〈X̂bŶb〉

〈ŶbX̂a〉 〈ŶbŶa〉 〈ŶbX̂b〉 〈ŶbŶb〉


. (S37)

and calculate the smallest symplectic eigenvalue ν of the partially transposed covariance matrix to

verify CV hyperentanglement.

According to the measured experimental parameters including intensity gains and visibilities
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Fig S8 Fidelities between the theoretically predicted and experimentally generated hyperentangled states.

for different modes as shown in Fig. S5 above, all the theoretically predicted symplectic eigenvalue

ν are shown in Fig. S7(b), which agree well with the corresponding experimental results as shown

in Fig. S7(a).

The fidelities between the theoretically predicted and experimentally generated hyperentangled

states can be calculated based on the quantum fidelity for arbitrary Gaussian states.81 According

to the theoretically predicted covariance matrix σ1 (Eq. S37) and the experimentally measured

covariance matrix σ2, we can obtain the fidelity

F (σ1, σ2) =
1

√
Γ +
√

Λ−
√

(
√

Γ +
√

Λ)2 −∆
, (S38)

where Γ = 16det(Ωσ1Ωσ2 − I4/4), Λ = 16det(σ1 + iΩ/2)det(σ2 + iΩ/2), ∆ = det(σ1 + σ2),

Ω =

(
0 1
−1 0

)
⊗ I2, and In is the n × n identity matrix. The fidelities varying with `, p, and

f are shown in Fig. S8. These fidelities are all above 0.9, showing high similarity between the

theoretically predicted and experimentally generated hyperentangled states.
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Fig S9 Separating hyperentangled modes based on LG mode sorter.

S9 Separating hyperentangled modes

By exploiting LG mode sorter and frequency filter cavity, all these hyperentangled modes can

be spatially separated and individually accessed, making our system particularly useful for high-

capacity parallel and multiple-DOF CV quantum communication.

There have been a series of studies on sorting LG modes according to their OAM and radial

index.58,59,73,74 A promising method is based on multi-plane light conversion (MPLC).73,74 By em-

ploying wavefront modulation of multiple phase holograms, a beam containing multiple LG mode

components can be decomposed into a grid of identical Gaussian spots each containing a single-

mode LG component. In this way, sorting of OAM and radial modes can be easily implemented

with high dimensionality. This method is efficient and can be integrated with our system as shown

in Fig. S9.

Frequency filter cavity can be employed as frequency-dependent beam splitter to separate the
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Fig S10 Separating hyperentangled modes based on frequency filter cavity.

frequency modes.75 One such example is shown in Fig. S10. The ring filter cavity consists of

three low loss mirrors, one is curved mirror, and two others are plane mirrors as the input-output

coupling. When the ring filter cavity resonates with one of the frequency modes, it transmits this

mode and reflects the rest. A cascade of several ring filter cavities can be employed to separate

multiple frequency modes. Such method has been used to separate frequency multiplexed CV

entangled states and demonstrate frequency multiplexing CV quantum dense coding.
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